重要介紹MAC電磁閥結(jié)構(gòu)示意及工作過程
MAC電磁閥內(nèi)部流動數(shù)值模擬的控制方程組,依據(jù)數(shù)值計算要求,設(shè)定適當(dāng)?shù)倪吔鐥l件,采用結(jié)構(gòu)與非結(jié)構(gòu)網(wǎng)格相結(jié)合有限體積法對控制方程組進行離散;應(yīng)用CFD軟件對多級套筒調(diào)節(jié)閥內(nèi)部流場進行內(nèi)三維湍流流動數(shù)值模擬,分別對其壓力場、速度場和跡線分布進行了分析。結(jié)果表明多級套筒結(jié)構(gòu)的設(shè)計能較好地改進閥內(nèi)流動狀況,實現(xiàn)壓力的漸變,有效地避免汽蝕現(xiàn)象的發(fā)生。在設(shè)計過程中引入了CFD仿真實驗,研究了多級套筒調(diào)節(jié)閥的流量特性,提高了樣機試制的成功率,縮短了開發(fā)周期,降低了成本,從而為多級套筒調(diào)節(jié)閥的設(shè)計與研究提供借鑒。
MAC電磁閥系列,它是流體運輸過程和工藝環(huán)路中的重要控制元件,是確保各種工藝設(shè)備正常工作的關(guān)鍵設(shè)備,被廣泛應(yīng)用于工業(yè)及日常生活各個域中。隨著技術(shù)的進步,工業(yè)實踐中的各種場合都對調(diào)節(jié)閥提出了高溫、高壓、高壓差等要求。尤其是應(yīng)用于高壓差條件下的調(diào)節(jié)閥,極易在閥芯及閥座部位產(chǎn)生嚴(yán)重的沖蝕和汽蝕,并伴有的振動和噪聲現(xiàn)象。這些現(xiàn)象導(dǎo)致在高壓差條件下工作的調(diào)節(jié)閥工作性能降低、使用壽命縮短,帶來安全隱患,給工業(yè)域的安全高效運轉(zhuǎn)帶來諸多問題,甚至導(dǎo)致嚴(yán)重事故發(fā)生。因此,研發(fā)于高壓差工況下的特殊調(diào)節(jié)閥意義重大。
文中介紹了研發(fā)的多級套筒式調(diào)節(jié)閥內(nèi)部結(jié)構(gòu)及其工作過程。應(yīng)用計算流體力學(xué)(CFD)軟件對多級套筒調(diào)節(jié)閥內(nèi)部流場進行內(nèi)三維湍流流動數(shù)值模擬,獲得調(diào)節(jié)閥內(nèi)部壓力、速度及跡線的分布。借助CFD仿真實驗的方法,可以得到多級套筒調(diào)節(jié)閥的CV和流量特性曲線,提高樣機試制的成功率,縮短開發(fā)周期,避免常規(guī)設(shè)計中,憑借經(jīng)驗參數(shù)或者實際試驗后再修改造成的周期與成本的增加,從而為多級套筒調(diào)節(jié)閥的設(shè)計與研究提供進一步的參考。
1 MAC電磁閥結(jié)構(gòu)及工作過程
MAC電磁閥多用于電站、石化、化工及其他高參數(shù)工況下,工作介質(zhì)多為高溫水或過熱蒸汽。通液體時流向為從右向左,液體由套筒外側(cè)流向內(nèi)側(cè);通氣體時流向為從左至右,氣體由套筒內(nèi)側(cè)流向外側(cè)。由于多級套筒的作用,流體在通過閥體時要經(jīng)歷一個多次逐級降壓的過程,流體每通過一層套筒壓力就會下降一次。多級套筒作為該閥的部件,可以使介質(zhì)流速的增加得到抑制,將壓力的變化控制在允許的范圍之內(nèi),有效地避免和減輕閃蒸空化現(xiàn)象的發(fā)生以及高速流體對閥門部件的沖蝕,延長調(diào)節(jié)閥的使用壽命,并設(shè)備與系統(tǒng)的運行。
MAC電磁閥利用Solidworks三維實體建模軟件,對調(diào)節(jié)閥腔內(nèi)部流道建立模型。整體模型由外部閥腔流道與內(nèi)部套筒流道兩部分裝配組成,所建實體模型準(zhǔn)確地反映了調(diào)節(jié)閥內(nèi)部結(jié)構(gòu)的實際情況。同時,為使模擬計算時流道兩端的流動得以充分進行以及進出口面流動呈穩(wěn)定均勻,對閥門內(nèi)部流道模型進出口兩端都進行了延伸,建立的流道模型如圖2所示。
MAC電磁閥閥內(nèi)流道模型示意
2.3 數(shù)值模擬計算及結(jié)果分析
為了計算精度,采用以結(jié)構(gòu)性和非結(jié)構(gòu)性網(wǎng)格相結(jié)合的劃分方法形成網(wǎng)格。流道兩端的直管段網(wǎng)格采用Hex/Wedge(六面體/楔形)網(wǎng)格進行劃分,中間多級套筒部分的流體通道因為結(jié)構(gòu)比較復(fù)雜,所以采用Tet/Hybrid(四面體/混合)網(wǎng)格進行劃分,并且為了使計算結(jié)果更加,對每一層套筒中的小孔都分別進行了加密處理。由于計算模型是對稱的,因而取其50%進行模擬計算,以減少網(wǎng)格數(shù)目、節(jié)省計算時間;以連續(xù)性方程、三維雷諾平均N-S方程和基于各向同性渦黏性理論的k-ε方程組成調(diào)節(jié)閥內(nèi)部流動數(shù)值模擬的控制方程組,采用有限體積法對控制方程組進行離散;根據(jù)廠方提供的系統(tǒng)運行實際工況參數(shù),該次計算的進口處壓力為7MPa,出口處壓力為0,介質(zhì)為常溫水,密度ρ=998.2kg/m3。
2.3.1 壓力場分析
壓力分布云圖如圖3所示,從中可以看出:調(diào)節(jié)閥進、出口壓力分布比較均勻,套筒中壓力逐級穩(wěn)定下降,在閥體下腔與出口直管段處有局部低壓區(qū)域,如A處所示。此工況下,局部壓力為7.17MPa,分布在閥門進口與外側(cè)套筒處。
圖3 z=0水平截面上壓力分布云圖
2.3.2 速度場分析
速度分布如圖4所示,入口端和閥腔內(nèi)速度分布比較均勻,出口端因受套筒節(jié)流效應(yīng)及閥體流道結(jié)構(gòu)影響速度分布較不均勻。套筒內(nèi)速度由外向內(nèi)逐級上升,在7MPa壓差的工況下,在內(nèi)側(cè)套筒中速度達到,如B處所示。在入口段及出口段流道拐角處出現(xiàn)了幾處范圍很小的閥門死區(qū),此處流體靜止,速度為0。
圖4 z=0水平截面上速度分布云圖
2.3.3 跡線
閥內(nèi)流體跡線分布如圖5所示,跡線是單個質(zhì)點在連續(xù)時間內(nèi)的流動軌跡線,是拉格朗日法描述流動的一種方法,閥內(nèi)流體跡線在進口處較為均勻,由套筒進入閥體下腔時分布比較集中,出口處部分由于流道結(jié)構(gòu)特點流體分布較不均勻,如C處所示。